Additions and Corrections

Vol. 55, 1990

Merrikh Ramezanian, Anne Buyle Padias, F. D. Saeva, and H. K. Hall, Jr.*. Synthesis and Reactions of Highly Electrophilic Imines Containing the N-Cyano Group.

Page 1769, Table I. Corrected values for the AM1 calculated HOMO, LUMO, and heat of formation for the N-cyanoimine derivatives are listed in the revised table.

The corrected values are now in line with those published in Saalfrank, R. W.; Lurz, C. J.; Hassa, J.; Danion, D.; Toupet, L. Chem. Ber. 1991, 124, 595.

Table I. AM1 Molecular Orbital Calculations

	E HOMO, eV	E LUMO, eV	heat of formation, kcal/mol
NC CN	-11.52	-2.52	152.38
NC NC	-12.32	-2.19	135.2
MeOOC NCN	-11.85	-1.85	20.77
MeOOC NC CN	-12.18	-1.80	19.48
MeOOC N CN	-11.58	-1.56	-94 .71

Vol. 56, 1991

Nanine A. Van Draanen, Simeon Arseniyadis, Michael T. Crimmins, and Clayton H. Heathcock*. Protocols for the Preparation of Each of the Four Possible Stereoisomeric α -Alkyl- β -hydroxy Carboxylic Acids from a Single Chiral Aldol Reagent.

Page 2502, column 1. The first equation is incorrect and should be changed to the following:

 $\mathbf{a}: \mathbf{R} = \mathbf{Me}; \ \mathbf{b}: \mathbf{R} = \mathbf{i}\cdot\mathbf{Pr}; \ \mathbf{c}: \mathbf{R} = \mathbf{t}\cdot\mathbf{Bu}; \ \mathbf{d}: \mathbf{R} = \mathbf{Ph}$

In the General Procedure for Magnesium-Mediated Aldol Reactions, on page 2505, an important phrase was omitted. The text beginning on line 10 should be changed to "The enolate solution was then cooled to -78 °C and the aldehyde (2 mmol) was added dropwise. 25 The reaction mixture is warmed to approximately -5 °C (ice-acetone bath) and stirred for 30 min at this temperature. After 30 min, ...".

The ¹³C NMR data given for compound 21b is incorrect. The correct data are δ 12.81, 13.53, 19.76, 26.10, 29.13, 35.21, 44.38, 79.10, 84.52, 218.51.

Alessandro Dondoni* and Pedro Merino. Chemistry of the Enolates of 2-Acetylthiazole: Aldol Reactions with Chiral Aldehydes To Give 3-Deoxy Aldos-2-uloses and 3-Deoxy 2-Ulosonic Acids. A Short Total Synthesis of 3-Deoxy-D-manno-2-octulosonic Acid (KDO).

Page 5298, Scheme V. The structures of compounds 18 and 19 should be corrected as shown and the postulated intermediate 17 should be disregarded.

18: mp 134–135 °C (from ethyl acetate); $[\alpha]_D = +13.4^\circ$ (c 0.8, MeOH); ¹H NMR 300 MHz (D₂O) δ 7.62 (d, H₂), 7.36 (d, H₁), 6.72 (d, H₃), 6.41 (d, H₄), 4.58 (d, H₆), 3.89 (ddd, H₆), 3.66 (dd, H₇), 3.51 (dd, H₇). $J(H_1-H_2) = 3.2$ Hz, $J(H_3-H_4) = 3.6$ Hz, $J(H_6-H_6) = 7.4$ Hz, $J(H_6-H_7) = 6.4$ Hz, $J(H_6-H_{7'}) = 3.5$ Hz, $J(H_7-H_{7'}) = 12.1$ Hz.

19: mp 125–126 °C (from ethyl acetate–n-hexane); $[\alpha]_D$ = +35.9° (c 1, CHCl₃); ¹H NMR 300 MHz (CHCl₃) δ 7.81 (d, H₂), 7.31 (d, H₁), 6.97 (d, H₃), 6.51 (dd, H₄), 4.93 (ddd, H₆), 4.49 (ddd, H₆), 4.15 (dd, H₇), 4.08 (dd, H₇), 2.62 (d, OH), 1.50 (s, CH₃), 1.41 (s, CH₃). $J(H_1-H_2)$ = 3.2 Hz, $J(H_3-H_4)$ = 3.6 Hz, $J(H_4-H_5)$ = 0.8 Hz, $J(H_5-H_6)$ = 5.1 Hz, $J(H_5-OH)$ = 3.5 Hz; $J(H_6-H_7)$ = 5.6 Hz, $J(H_6-H_7)$ = 6.7 Hz, $J(H_7-H_7)$ = 9.8 Hz.

In both cases the assignments to H_7 and $H_{7'}$ may be reversed.

Naomichi Furukawa,* Satoshi Ogawa, Kazunori Matsumura, and Hisashi Fujihara. Extremely Facile Ligand-Exchange and Disproportionation Reactions of Diaryl Sulfoxides, Selenoxides, and Triarylphosphine Oxides with Organolithium and Grignard Reagents.

Page 6343, Table I. The yields (%) for compounds 5, 6, 7, 4, and 8 in row 14 are 35, 19, 0, 36, and 0, respectively.

Vol. 57, 1992

Joseph J. Barchi, Jr.,* Steven Musser, and Victor E. Marquez. The Decomposition of 1-(β -D-Ribofuranosyl)-1,2-di-hydropyrimidin-2-one (Zebularine) in Alkali: Mechanism and Products.

Page 538, Figure 2. The caption of Figure 2 should read ¹H NMR spectra of compound 9.

Page 540, line 19, should read as was shown in Scheme I. Some very pertinent references concerning the syntheses of compounds 6 and 8 and one in which the degradation of a related nucleoside was studied were unintentionally omitted. Compound 6 and degradation: Pithová, P.; Piskala, A.; Pitha, J.; Šorm, F. Coll. Czech. Chem. Commun. 1965, 30, 2801. Singh, P.; Hodgson, D. Acta Crystallogr., Sect. B 1976, 32, 2329. Benzing-Pardie, L.; Nikiforuk, J. H. J. Carbohydr. Chem. 1983, 2, 439. Compound 8: Merêsz, M.; Horváth, G.; Sohár, P.; Kuszmann, J. Tetrahedron 1975, 31, 1873. The authors thank Professor Koll (Oldenburg, F.R.G.) for calling these papers to our attention.